More education is associated with healthier smoking and drinking behaviors. Most analyses of effects of education focus on mean levels. Few studies have compared variance in health-related behaviors at different levels of education or analyzed how education impacts underlying genetic and environmental sources of health-related behaviors. This study explored these influences. In a 2002 postal questionnaire, 21,522 members of the Danish Twin Registry, born during 1931-1982, reported smoking and drinking habits. The authors used quantitative genetic models to examine how these behaviors' genetic and environmental variances differed with level of education, adjusting for birth-year effects. As expected, more education was associated with less smoking, and average drinking levels were highest among the most educated. At 2 standard deviations above the mean educational level, variance in smoking and drinking was about one-third that among those at 2 standard deviations below, because fewer highly educated people reported high levels of smoking or drinking. Because shared environmental variance was particularly restricted, one explanation is that education created a culture that discouraged smoking and heavy drinking. Correlations between shared environmental influences on education and the health behaviors were substantial among the well-educated for smoking in both sexes and drinking in males, reinforcing this Notion.
Background Reduced heart rate variability (HRV), a measure of cardiac autonomic dysfunction, is a risk factor for coronary artery disease. Diet can influence HRV, but this association may be confounded by genetic and environmental factors. Methods and Results We administered the Willett Food Frequency Questionnaire to 276 middle-aged male twins. We derived a score measuring the extent to which an individual's diet conformed to the Mediterranean diet following a published algorithm. The higher the score, the greater the similarity to the Mediterranean diet. All twins underwent 24-hour ambulatory ECG recording. Time and frequency domain measures of HRV were calculated. Mixed-effects regression was used to partition the association into between- and within-twin pair differences. After adjusting for energy intake, other nutritional factors, shared genes, and common environment, a 1-unit higher score was significantly associated with 3.9% to 13% higher time and frequency domain HRV parameters. Further controlling for known cardiovascular risk factors and use of fish oil supplements and medications did not substantially change the estimates. Conclusions The Mediterranean dietary pattern is associated with higher HRV.