25 August 2020 In Cardiovascular System
The National Institutes of Health stopped the worldwide Moderate Alcohol and Cardiovascular Health (MACH) trial in 2018 because of institutional failings that led to the biased design of this major study. Drawing on e-mail correspondence among officials, researchers, and alcohol companies, we provide the first, to our knowledge, detailed analysis of alcohol industry involvement in the MACH trial.Alcohol companies agreed to fund the MACH trial to advance their commercial interests rather than to help answer a major scientific question. Alcohol industry executives seized opportunities presented by discussions of the MACH trial to try to influence this study and wider public health, research, and policy decision-making.The process of soliciting research funding from corporations, which included convincing alcohol companies that the study design supported their commercial interests, was intrinsically biased. Thus, the three parties-research funding officials, researchers, and industry executives-coproduced the biased trial design. A detailed understanding of this episode will be helpful in advancing efforts to protect public health research from biases associated with corporate donations.
25 August 2020 In Phenolic compounds
BACKGROUND: Moderate consumption of red wine is associated with fewer cardiovascular events. We investigated whether red wine consumption counteracts the adverse vascular effects of cigarette smoking. METHODS: Participants smoked 3 cigarettes alone or after drinking a titrated volume of red wine. Clinical chemistry, blood counts, plasma cytokine enzyme-linked immunosorbent assays, immunomagnetic separation of CD14(+) monocytes for gene expression analysis, fluorescence-activated cell sorting for microparticles, and isolation of circulating mononuclear cells to measure telomerase activity were performed, and urine cotinine levels were quantified. RESULTS: Compared with baseline, leukocytosis (P = .019), neutrophilia (P <.001), lymphopenia (P <.001), and eosinopenia (P = .008) were observed after only smoking. Endothelial and platelet-, monocyte-, and leukocyte-derived microparticles (P <.001 each) were elevated. In monocytes, messenger RNA expression of interleukin (IL)-6 (2.6- +/- 0.57-fold), tumor necrosis factor alpha (2.2- +/- 0.62-fold), and IL-1b (2.3- +/- 0.44-fold) were upregulated, as was IL-6 (1.2 +/- 0.12-fold) protein concentration in plasma. Smoking acutely inhibited mononuclear cell telomerase activity. Markers of endothelial damage, inflammation, and cellular aging were completely attenuated by red wine consumption. CONCLUSION: Cigarette smoke results in acute endothelial damage, vascular and systemic inflammation, and indicators of the cellular aging processes in otherwise healthy nonsmokers. Pretreatment with red wine was preventive. The findings underscore the magnitude of acute damage exerted by cigarette smoking in "occasional lifestyle smokers" and demonstrate the potential of red wine as a protective strategy to avert markers of vascular injury.
25 August 2020 In Phenolic compounds

Over the last few decades, polyphenols, and flavonoids in particular, have attracted the interest of researchers, as they have been associated with the health-promoting effects derived from diets rich in vegetables and fruits, including moderate wine consumption.

Recent scientific evidence suggests that wine polyphenols exert their effects through interactions with the gut microbiota, as they seem to modulate microbiota and, at the same time, are metabolized by intestinal bacteria into specific bioavailable metabolites. Microbial metabolites are better absorbed than their precursors and may be responsible for positive health activities in the digestive system (local effects) and, after being absorbed, in tissues and organs (systemic effects). Differences in gut microbiota composition and functionality among individuals can affect polyphenol activity and, therefore, their health effects.

The aim of this review is to integrate the understanding of the metabolism and mechanisms of action of wine polyphenols at both local and systemic levels, underlining their impact on the gut microbiome and the inter-individual variability associated with polyphenols' metabolism and further physiological effects. The advent of promising dietary approaches linked to wine polyphenols beyond the gut microbiota community and metabolism are also discussed.

25 August 2020 In Phenolic compounds

There is a growing body of evidence implicating the gut 'microbiome' role in overall human health. Bacterial species belonging to the genera Lactobacillus and Bifidobacterium are generally considered to be beneficial and are commonly used in probiotic applications, whereas increases in some genera including Clostridum, Eubacterium and Bacteroides are implicated in negative health outcomes.Dietary polyphenols are bioactive compounds that have been found to increase the numbers of beneficial bacteria and antimicrobial actions against pathogenic bacteria, however most studies have been conducted in animal models or in-vitro colonic models.

The aim of this systematic review was to provide an overview of recent trials on the effect of dietary grape and red wine polyphenols on the gut microbiota in humans. Following PRISMA guidelines, a systematic review was conducted of electronic databases (PubMed, CINAHL, Cochrane Library, Wed of Science and Scopus) to identify human intervention trials examining the effect of grape or wine polyphenols on gut microbiota. Seven trials met the inclusion criteria. One study looked at changes in gut microbiota following the ingestion of de-alcoholised red wine or red wine, and six studies referred to gut microbiota as intermediates in formation of phenolic metabolites.

All studies confirmed that ingested polyphenols from grape and red wine, were modulated by gut microbiota, increasing numbers of polyphenolic metabolites which were found in blood, urine, ileal fluid and faeces. Intake of polyphenols derived from grape and red wine can modulate gut microbiota and contribute to beneficial microbial ecology that can enhance human health benefits. Additionally, grape and red wine polyphenols were modulated by the gut microbiota and there is a potential for a two-way relationship between the gut microbiota and polyphenolic compounds.

Nevertheless, additional research is required to fully understand the complex relationship between gut microbiota and dietary polyphenols before any health claims can be made in relation to human health

Page 5 of 96

Contact us

We love your feedback. Get in touch with us.

  • Tel: +32 (0)2 230 99 70
  • Email: This email address is being protected from spambots. You need JavaScript enabled to view it.

Disclaimer

The authors have taken reasonable care in ensuring the accuracy of the information herein at the time of publication and are not responsible for any errors or omissions. Read more on our disclaimer and Privacy Policy.