22 February 2019 In General Health

BACKGROUND: Unhealthy alcohol use (UAU) is one of the major causes of preventable morbidity, mortality, and associated behavioral risks worldwide. Although mobile health (mHealth) interventions can provide consumers with an effective means for self-control of UAU in a timely, ubiquitous, and cost-effective manner, to date, there is a lack of understanding about different health outcomes brought by such interventions. The core components of these interventions are also unclear.

OBJECTIVE: This study aimed to systematically review and synthesize the research evidence about the efficacy of mHealth interventions on various health outcomes for consumer self-control of UAU and to identify the core components to achieve these outcomes.

METHODS: We systematically searched 7 electronic interdisciplinary databases: Scopus, PubMed, PubMed Central, CINAHL Plus with full text, MEDLINE with full text, PsycINFO, and PsycARTICLES. Search terms and Medical Subject Headings "mHealth," "text message," "SMS," "App," "IVR," "self-control," "self-regulation," "alcohol*," and "intervention" were used individually or in combination to identify peer-reviewed publications in English from 2008 to 2017. We screened titles and abstracts and assessed full-text papers as per inclusion and exclusion criteria. Data were extracted from the included papers according to the Consolidated Standards of Reporting Trials-EHEALTH checklist (V 1.6.1) by 2 authors independently. Data quality was assessed by the Mixed Methods Appraisal Tool. Data synthesis and analyses were conducted following the procedures for qualitative content analysis. Statistical testing was also conducted to test differences among groups of studies. RESULTS: In total, 19 studies were included in the review. Of these 19 studies, 12 (63%) mHealth interventions brought significant positive outcomes in improving participants' health as measured by behavioral (n=11), physiological (n=1), and cognitive indicators (n=1). No significant health outcome was reported in 6 studies (6/19, 32%). Surprisingly, a significant negative outcome was reported for the male participants in the intervention arm in 1 study (1/19, 5%), but no change was found for the female participants. In total, 5 core components reported in the mHealth interventions for consumer self-control of UAU were context, theoretical base, delivery mode, content, and implementation procedure. However, sound evidence is yet to be generated about the role of each component for mHealth success. The health outcomes were similar regardless of types of UAU, deployment setting, with or without nonmobile cointervention, and with or without theory.

CONCLUSIONS: Most studies reported mHealth interventions for self-control of UAU appeared to be improving behavior, especially the ones delivered by short message service and interactive voice response systems. Further studies are needed to gather sound evidence about the effects of mHealth interventions on improving physiological and cognitive outcomes as well as the optimal design of these interventions, their implementation, and effects in supporting self-control of UAU.

22 February 2019 In General Health

BACKGROUND: Prevention aiming at smoking, alcohol consumption, and BMI could potentially bring large gains in life expectancy (LE) and health expectancy measures such as Healthy Life Years (HLY) and Life Expectancy in Good Perceived Health (LEGPH) in the European Union. However, the potential gains might differ by region.

METHODS: A Sullivan life table model was applied for 27 European countries to calculate the impact of alternative scenarios of lifestyle behavior on life and health expectancy. Results were then pooled over countries to present the potential gains in HLY and LEGPH for four European regions.

RESULTS: Simulations show that up to 4 years of extra health expectancy can be gained by getting all countries to the healthiest levels of lifestyle observed in EU countries. This is more than the 2 years to be gained in life expectancy. Generally, Eastern Europe has the lowest LE, HLY, and LEGPH. Even though the largest gains in LEPGH and HLY can also be made in Eastern Europe, the gap in LE, HLY, and LEGPH can only in a small part be closed by changing smoking, alcohol consumption, and BMI.

CONCLUSION: Based on the current data, up to 4 years of good health could be gained by adopting lifestyle as seen in the best-performing countries. Only a part of the lagging health expectancy of Eastern Europe can potentially be solved by improvements in lifestyle involving smoking and BMI. Before it is definitely concluded that lifestyle policy for alcohol use is of relatively little importance compared to smoking or BMI, as our findings suggest, better data should be gathered in all European countries concerning alcohol use and the odds ratios of overconsumption of alcohol.

22 February 2019 In General Health

The determination of appropriate dietary strategies for the prevention of chronic degenerative diseases, cancer, diabetes, and cardiovascular diseases remains a challenging and highly relevant issue worldwide. Epidemiological dietary interventions have been studied for decades with contrasting impacts on human health. Moreover, research scientists and physicians have long debated diets encouraging alcohol intake, such as the Mediterranean and French-style diets, with regard to their impact on human health. Understanding the effects of these diets may help to improve in the treatment and prevention of diseases. However, further studies are warranted to determine which individual food components, or combinations thereof, have a beneficial impact on different diseases, since a large number of different compounds may occur in a single food, and their fate in vivo is difficult to measure. Most explanations for the positive effects of Mediterranean-style diet, and of the French paradox, have focused largely on the beneficial properties of antioxidants, among other compounds/metabolites, in foods and red wine. Wine is a traditional alcoholic beverage that has been associated with both healthy and harmful effects. Not withstanding some doubts, there is reasonable unanimity among researchers as to the beneficial effects of moderate wine consumption on cardiovascular disease, diabetes, osteoporosis, and longevity, which have been ascribed to polyphenolic compounds present in wine. Despite this, conflicting findings regarding the impact of alcohol consumption on human health, and contradictory findings concerning the effects of non-alcoholic wine components such as resveratrol, have led to confusion among consumers. In addition to these contradictions and misconceptions, there is a paucity of human research studies confirming known positive effects of polyphenols in vivo. Furthermore, studies balancing both known and unknown prognostic factors have mostly been conducted in vitro or using animal models. Moreover, current studies have shifted focus from red wine to dairy products, such as cheese, to explain the French paradox. The aim of this review is to highlight the contradictions, misconceptions, and scientific facts about wines and diets, giving special focus to the Mediterranean and French diets in disease prevention and human health improvement. To answer the multiplicity of questions regarding the effects of diet and specific diet components on health, and to relieve consumer uncertainty and promote health, comprehensive cross-demographic studies using the latest technologies, which include foodomics and integrated omics approaches, are warranted.

22 February 2019 In Drinking & Driving

BACKGROUND: Drink driving is an important risk factor for road traffic accidents (RTAs), which cause high levels of morbidity and mortality globally. Lowering the permitted blood alcohol concentration (BAC) for drivers is a common public health intervention that is enacted in countries and jurisdictions across the world. In Scotland, on Dec 5, 2014, the BAC limit for drivers was reduced from 0.08 g/dL to 0.05 g/dL. We therefore aimed to evaluate the effects of this change on RTAs and alcohol consumption.

METHODS: In this natural experiment, we used an observational, comparative interrupted time-series design by use of data on RTAs and alcohol consumption in Scotland (the interventional group) and England and Wales (the control group). We obtained weekly counts of RTAs from police accident records and we estimated weekly off-trade (eg, in supermarkets and convenience stores) and 4-weekly on-trade (eg, in bars and restaurants) alcohol consumption from market research data. We also used data from automated traffic counters as denominators to calculate RTA rates. We estimated the effect of the intervention on RTAs by use of negative binomial panel regression and on alcohol consumption outcomes by use of seasonal autoregressive integrated moving average models. Our primary outcome was weekly rates of RTAs in Scotland, England, and Wales. This study is registered with ISRCTN, number ISRCTN38602189.

FINDINGS: We assessed the weekly rate of RTAs and alcohol consumption between Jan 1, 2013, and Dec 31, 2016, before and after the BAC limit came into effect on Dec 5, 2014. After the reduction in BAC limits for drivers in Scotland, we found no significant change in weekly RTA rates after adjustment for seasonality and underlying temporal trend (rate ratio 1.01, 95% CI 0.94-1.08; p=0.77) or after adjustment for seasonality, the underlying temporal trend, and the driver characteristics of age, sex, and socioeconomic deprivation (1.00, 0.96-1.06; p=0.73). Relative to RTAs in England and Wales, where the reduction in BAC limit for drivers did not occur, we found a 7% increase in weekly RTA rates in Scotland after this reduction in BAC limit for drivers (1.07, 1.02-1.13; p=0.007 in the fully-adjusted model). Similar findings were observed for serious or fatal RTAs and single-vehicle night-time RTAs. The change in legislation in Scotland was associated with no change in alcohol consumption, measured by per-capita off-trade sales (-0.3%, -1.7 to 1.1; p=0.71), but a 0.7% decrease in alcohol consumption measured by per-capita on-trade sales (-0.7%, -0.8 to -0.5; p<0.0001).

INTERPRETATION: Lowering the driving BAC limit to 0.05 g/dL from 0.08 g/dL in Scotland was not associated with a reduction in RTAs, but this change was associated with a small reduction in per-capita alcohol consumption from on-trade alcohol sales. One plausible explanation is that the legislative change was not suitably enforced-for example with random breath testing measures. Our findings suggest that changing the legal BAC limit for drivers in isolation does not improve RTA outcomes. These findings have significant policy implications internationally as several countries and jurisdictions consider a similar reduction in the BAC limit for drivers.

FUNDING: National Institute for Health Research Public Health Research Programme.

Page 4 of 293

Contact us

We love your feedback. Get in touch with us.

  • Tel: +32 (0)2 230 99 70
  • Email: This email address is being protected from spambots. You need JavaScript enabled to view it.

Disclaimer

The authors have taken reasonable care in ensuring the accuracy of the information herein at the time of publication and are not responsible for any errors or omissions. Read more on our disclaimer and Privacy Policy.