15 June 2022 In Cardiovascular System

Evidence from research studies reports that wine consumption is associated with lower cardiovascular disease risk, partly through the amelioration of oxidative stress. The aim of the present study was to examine the effect of regular light to moderate wine consumption from coronary heart disease (CHD) patients compared to the effect induced by alcohol intake without the presence of wine microconstituents, on oxidation-induced macromolecular damage as well as on endogenous antioxidant enzyme activity. A randomized, single-blind, controlled, three-arm parallel intervention was carried out, in which 64 CHD patients were allocated to three intervention groups. Group A consumed no alcohol, and Group B (wine) and Group C (ethanol) consumed 27 g of alcohol/day for 8 weeks. Blood and urine samples were collected at baseline and at 4 and 8 weeks. Urine oxidized guanine species levels, protein carbonyls, thiobarbituric acid substances (TBARS) levels, as well as superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, were measured. Oxidized guanine species and protein carbonyl levels were significantly increased in the ethanol group during the intervention and were significantly decreased in the wine group. These results support the idea that wine's bioactive compounds may exert antioxidant actions that counteract the macromolecular oxidative damage induced by alcohol in CHD patients.

06 May 2014 In Phenolic compounds

Resveratrol, a polyphenol in red wine, has been reported as a calorie restriction mimetic with potential antiaging and antidiabetogenic properties. It is widely consumed as a nutritional supplement, but its mechanism of action remains a mystery. Here, we report that the metabolic effects of resveratrol result from competitive inhibition of cAMP-degrading phosphodiesterases, leading to elevated cAMP levels. The resulting activation of Epac1, a cAMP effector protein, increases intracellular Ca(2+) levels and activates the CamKKbeta-AMPK pathway via phospholipase C and the ryanodine receptor Ca(2+)-release channel. As a consequence, resveratrol increases NAD(+) and the activity of Sirt1. Inhibiting PDE4 with rolipram reproduces all of the metabolic benefits of resveratrol, including prevention of diet-induced obesity and an increase in mitochondrial function, physical stamina, and glucose tolerance in mice. Therefore, administration of PDE4 inhibitors may also protect against and ameliorate the symptoms of metabolic diseases associated with aging.

Disclaimer

The authors have taken reasonable care in ensuring the accuracy of the information herein at the time of publication and are not responsible for any errors or omissions. Read more on our disclaimer and Privacy Policy.