25 August 2020 In Phenolic compounds

There is a growing body of evidence implicating the gut 'microbiome' role in overall human health. Bacterial species belonging to the genera Lactobacillus and Bifidobacterium are generally considered to be beneficial and are commonly used in probiotic applications, whereas increases in some genera including Clostridum, Eubacterium and Bacteroides are implicated in negative health outcomes.Dietary polyphenols are bioactive compounds that have been found to increase the numbers of beneficial bacteria and antimicrobial actions against pathogenic bacteria, however most studies have been conducted in animal models or in-vitro colonic models.

The aim of this systematic review was to provide an overview of recent trials on the effect of dietary grape and red wine polyphenols on the gut microbiota in humans. Following PRISMA guidelines, a systematic review was conducted of electronic databases (PubMed, CINAHL, Cochrane Library, Wed of Science and Scopus) to identify human intervention trials examining the effect of grape or wine polyphenols on gut microbiota. Seven trials met the inclusion criteria. One study looked at changes in gut microbiota following the ingestion of de-alcoholised red wine or red wine, and six studies referred to gut microbiota as intermediates in formation of phenolic metabolites.

All studies confirmed that ingested polyphenols from grape and red wine, were modulated by gut microbiota, increasing numbers of polyphenolic metabolites which were found in blood, urine, ileal fluid and faeces. Intake of polyphenols derived from grape and red wine can modulate gut microbiota and contribute to beneficial microbial ecology that can enhance human health benefits. Additionally, grape and red wine polyphenols were modulated by the gut microbiota and there is a potential for a two-way relationship between the gut microbiota and polyphenolic compounds.

Nevertheless, additional research is required to fully understand the complex relationship between gut microbiota and dietary polyphenols before any health claims can be made in relation to human health

21 February 2020 In Cardiovascular System

OBJECTIVE: To examine how a healthy lifestyle is related to life expectancy that is free from major chronic diseases. DESIGN: Prospective cohort study.

SETTING AND PARTICIPANTS: The Nurses' Health Study (1980-2014; n=73 196) and the Health Professionals Follow-Up Study (1986-2014; n=38 366).

MAIN EXPOSURES: Five low risk lifestyle factors: never smoking, body mass index 18.5-24.9, moderate to vigorous physical activity (>/=30 minutes/day), moderate alcohol intake (women: 5-15 g/day; men 5-30 g/day), and a higher diet quality score (upper 40%).

MAIN OUTCOME: Life expectancy free of diabetes, cardiovascular diseases, and cancer. RESULTS: The life expectancy free of diabetes, cardiovascular diseases, and cancer at age 50 was 23.7 years (95% confidence interval 22.6 to 24.7) for women who adopted no low risk lifestyle factors, in contrast to 34.4 years (33.1 to 35.5) for women who adopted four or five low risk factors. At age 50, the life expectancy free of any of these chronic diseases was 23.5 (22.3 to 24.7) years among men who adopted no low risk lifestyle factors and 31.1 (29.5 to 32.5) years in men who adopted four or five low risk lifestyle factors. For current male smokers who smoked heavily (>/=15 cigarettes/day) or obese men and women (body mass index >/=30), their disease-free life expectancies accounted for the lowest proportion (</=75%) of total life expectancy at age 50.

CONCLUSION: Adherence to a healthy lifestyle at mid-life is associated with a longer life expectancy free of major chronic diseases.

22 February 2019 In General Health

There is no available abstract for this article.

29 October 2018 In Phenolic compounds

There is a growing body of evidence implicating the gut 'microbiome' role in overall human health. Bacterial species belonging to the genera Lactobacillus and Bifidobacterium are generally considered to be beneficial and are commonly used in probiotic applications, whereas increases in some genera including Clostridum, Eubacterium and Bacteroides are implicated in negative health outcomes. Dietary polyphenols are bioactive compounds that have been found to increase the numbers of beneficial bacteria and antimicrobial actions against pathogenic bacteria, however most studies have been conducted in animal models or in-vitro colonic models. The aim of this systematic review was to provide an overview of recent trials on the effect of dietary grape and red wine polyphenols on the gut microbiota in humans. Following PRISMA guidelines, a systematic review was conducted of electronic databases (PubMed, CINAHL, Cochrane Library, Wed of Science and Scopus) to identify human intervention trials examining the effect of grape or wine polyphenols on gut microbiota. Seven trials met the inclusion criteria. One study looked at changes in gut microbiota following the ingestion of de-alcoholised red wine or red wine, and six studies referred to gut microbiota as intermediates in formation of phenolic metabolites. All studies confirmed that ingested polyphenols from grape and red wine, were modulated by gut microbiota, increasing numbers of polyphenolic metabolites which were found in blood, urine, ileal fluid and faeces. Intake of polyphenols derived from grape and red wine can modulate gut microbiota and contribute to beneficial microbial ecology that can enhance human health benefits. Additionally, grape and red wine polyphenols were modulated by the gut microbiota and there is a potential for a two-way relationship between the gut microbiota and polyphenolic compounds. Nevertheless, additional research is required to fully understand the complex relationship between gut microbiota and dietary polyphenols before any health claims can be made in relation to human health.

Page 1 of 15

Contact us

We love your feedback. Get in touch with us.

  • Tel: +32 (0)2 230 99 70
  • Email: This email address is being protected from spambots. You need JavaScript enabled to view it.

Disclaimer

The authors have taken reasonable care in ensuring the accuracy of the information herein at the time of publication and are not responsible for any errors or omissions. Read more on our disclaimer and Privacy Policy.