05 December 2018 In Cancer

Alcohol has consistently been shown to increase breast cancer (BC) risk. This association may be modified by single nucleotide polymorphisms in alcohol dehydrogenase isoenzymes ADH1B and ADH1C. The Netherlands Cohort Study comprises 62 573 women, aged 55-69 years at baseline (1986). Follow-up for postmenopausal BC for 20.3 years was available. Genotyping of 6 tag SNPs in ADH1B and ADH1C, respectively, was performed on DNA from toenails. A case-cohort approach was used for analysis (complete data available for: nsubcohort= 1301; ncases= 1630). Cox regression models for postmenopausal BC were applied to determine marginal effects of alcohol intake and SNPs using a dominant genetic model, as well as multiplicative interaction of the two. Results were also obtained for subtypes by estrogen (ER) and progesterone receptor (PR) status. Multiple testing was adjusted for by applying the false discovery rate (FDR). Alcohol intake (categorical) increased the risk of postmenopausal BC (ptrend=0.031). Trends for ER and PR subgroups followed a similar pattern. Continuous modelling of alcohol resulted in a hazard rate ratio (HR) for overall postmenopausal BC of 1.09 (95% CI: 1.01 - 1.19) per 10g/d of alcohol. SNPs were not associated with BC risk. No effect modification of the alcohol-BC association by SNP genotype was seen after FDR-correction in overall BC and ER/PR subgroups. In conclusion, alcohol was shown to increase the risk of postmenopausal BC. This association was not significantly modified by common ADH1B and ADH1C SNPs, neither in overall BC nor in hormone receptor defined subtypes.

06 May 2014 In Phenolic compounds

BACKGROUND: Few studies have investigated the effect of dietary polyphenols on the complex human gut microbiota, and they focused mainly on single polyphenol molecules and select bacterial populations.

OBJECTIVE: The objective was to evaluate the effect of a moderate intake of red wine polyphenols on select gut microbial groups implicated in host health benefits.

DESIGN: Ten healthy male volunteers underwent a randomized, crossover, controlled intervention study. After a washout period, all of the subjects received red wine, the equivalent amount of de-alcoholized red wine, or gin for 20 d each. Total fecal DNA was submitted to polymerase chain reaction(PCR)-denaturing gradient gel electrophoresis and real-time quantitative PCR to monitor and quantify changes in fecal microbiota. Several biochemical markers were measured.

RESULTS: The dominant bacterial composition did not remain constant over the different intake periods. Compared with baseline, the daily consumption of red wine polyphenol for 4 wk significantly increased the number of Enterococcus, Prevotella, Bacteroides, Bifidobacterium, Bacteroides uniformis, Eggerthella lenta, and Blautia coccoides-Eubacterium rectale groups (P < 0.05). In parallel, systolic and diastolic blood pressures and triglyceride, total cholesterol, HDL cholesterol, and C-reactive protein concentrations decreased significantly (P < 0.05). Moreover, changes in cholesterol and C-reactive protein concentrations were linked to changes in the bifidobacteria number.

CONCLUSION: This study showed that red wine consumption can significantly modulate the growth of select gut microbiota in humans, which suggests possible prebiotic benefits associated with the inclusion of red wine polyphenols in the diet.

This trial was registered at controlled-trials.com as ISRCTN88720134

06 May 2014 In Phenolic compounds

Extensive research within the last decade has revealed that most chronic illnesses such as cancer, cardiovascular and pulmonary diseases, neurological diseases, diabetes, and autoimmune diseases exhibit dysregulation of multiple cell signaling pathways that have been linked to inflammation. Thus mono-targeted therapies developed for the last two decades for these diseases have proven to be unsafe, ineffective and expensive. Although fruits and vegetables are regarded to have therapeutic potential against chronic illnesses, neither their active component nor the mechanism of action is well understood. Resveratrol (trans-3, 5, 4'-trihydroxystilbene), a component of grapes, berries, peanuts and other traditional medicines, is one such polyphenol that has been shown to mediate its effects through modulation of many different pathways. This stilbene has been shown to bind to numerous cell-signaling molecules such as multi drug resistance protein, topoisomerase II, aromatase, DNA polymerase, estrogen receptors, tubulin and F1-ATPase. Resveratrol has also been shown to activate various transcription factor (e.g; NFkappaB, STAT3, HIF-1alpha, beta-catenin and PPAR-gamma), suppress the expression of antiapoptotic gene products (e.g; Bcl-2, Bcl-X(L), XIAP and survivin), inhibit protein kinases (e.g; src, PI3K, JNK, and AKT), induce antioxidant enzymes (e,g; catalase, superoxide dismutase and hemoxygenase-1), suppress the expression of inflammatory biomarkers (e.g., TNF, COX-2, iNOS, and CRP), inhibit the expression of angiogenic and metastatic gene products (e.g., MMPs, VEGF, cathepsin D, and ICAM-1), and modulate cell cycle regulatory genes (e.g., p53, Rb, PTEN, cyclins and CDKs). Numerous animal studies have demonstrated that this polyphenol holds promise against numerous age-associated diseases including cancer, diabetes, Alzheimer, cardiovascular and pulmonary diseases. In view of these studies, resveratrol's prospects for use in the clinics are rapidly accelerating. Efforts are also underway to improve its activity in vivo through structural modification and reformulation. Our review describes various targets of resveratrol and their therapeutic potential.

06 May 2014 In Phenolic compounds

PURPOSE: Epidemiological studies suggest that a moderate consumption of wine is associated with a reduced risk of cardiovascular diseases and with a reduced mortality for all causes, possibly due to increased antioxidant defences. The present intervention study was undertaken to evaluate the in vivo effects of wine polyphenols on gene expression in humans, along with their supposed antioxidant activity.

METHODS: Blood haemorheology and platelet function were also evaluated. In order to avoid interferences from alcohol, we used de-alcoholised wine (DAW) with different polyphenol content. A randomised cross-over trial of high-proanthocyanidin (PA) red DAW (500 mL/die, PA dose = 7 mg/kg b.w.) vs. low-PA rose DAW (500 mL/die, PA dose = 0.45 mg/kg) was conducted in 21 post-menopausal women in Florence, Italy. Oxidative DNA damage by the comet assay and gene expression by microarray was measured in peripheral blood lymphocytes, collected during the study period. Blood samples were also collected for the evaluation of haematological, haemostatic, haemorheological, and inflammatory parameters.

RESULTS: The results of the present study provide evidence that consumption of substantial amounts of de-alcoholised wine for 1 month does not exert a protective activity towards oxidative DNA damage, nor modifies significantly the gene expression profile of peripheral lymphocytes, whereas it shows blood-fluidifying actions, expressed as a significant decrease in blood viscosity. However, this effect does not correlate with the dosage of polyphenols of the de-alcoholised wine.

CONCLUSIONS: More intervention studies are needed to provide further evidence of the health-protective effects of wine proanthocyanidins.

Page 1 of 3

Disclaimer

The authors have taken reasonable care in ensuring the accuracy of the information herein at the time of publication and are not responsible for any errors or omissions. Read more on our disclaimer and Privacy Policy.