Phenolic compounds

 

Wine contains phenolic compounds (polyphenols) which give wine its characteristic colour and flavour and are produced by plants in response to fungal infection, ultraviolet light, and various chemical and physical stressors, especially during ripening. They are extracted from the seeds and skins of grapes during fermentation of winemaking, when the juice is in contact with the grape skins and seeds. The amount of polyphenols in red wine is generally greater than white wine because the red juice has longer contact with the grape skins during fermentation enabling more phenolic substances to be extracted into the red juice.

There is evidence that certain polyphenols, such as resveratrol, anthocyanins, flavonols and catechins in wine provide health benefits. Furthermore, rather than polyphenols themselves, their metabolites might be the real key players in cardiovascular and cancer protection. Researchers have shown that these polyphenols in wine act as antioxidants and are five times more potent than the benchmark antioxidant, vitamin E. These antioxidants are believed to reduce the damage caused by the body's free radicals (toxic waste products) which contribute to causing degenerative diseases in the body such as cancer, Alzheimer's disease, Parkinson's disease and ageing.

The polyphenols may also aid in inhibiting the oxidative transformation of ‘bad’ LDL cholesterol and thus, preventing the accumulation of this oxidised LDL cholesterol in the artery wall which eventually could block the blood flow and cause a heart attack or stroke.

These findings support the overwhelming and still growing body of scientific research indicating that moderate consumption of alcoholic beverages is associated with lower levels of coronary heart disease as well as with better health and lower mortality, especially when consumed in combination with
a healthy diet.

 

The above summary provides an overview of the topic, for more details and specific questions, please refer to the articles in the database.

 

PURPOSE: Red wine polyphenols (RWP) are plant-based molecules that have been extensively studied in relation to their protective effects on vascular health in both animals and humans. The aim of this review was to quantify and compare the efficacy of RWP and pure resveratrol on outcomes measures of vascular health and function in both animals and humans. METHODS: Comprehensive database searches were carried out through PubMed, Web of Science and OVID for randomised, placebo-controlled studies in both animals and humans. Meta-analyses were carried out on acute and chronic studies of RWP in humans, alongside sub-group analysis where possible. Risk-of-bias assessment was carried out for all included studies based on randomisation, allocation, blinding, outcome data reporting, and other biases. RESULTS: 48…
The Mediterranean diet (MedDiet) is one of the most widely described and evaluated dietary patterns in scientific literature. It is characterized by high intakes of vegetables, legumes, fruits, nuts, grains, fish, seafood, extra virgin olive oil, and a moderate intake of red wine. A large body of observational and experimental evidence suggests that higher adherence to the MedDiet is associated with lower risk of mortality, cardiovascular disease, metabolic disease, and cancer. Current mechanisms underlying the beneficial effects of the MedDiet include reduction of blood lipids, inflammatory and oxidative stress markers, improvement of insulin sensitivity, enhancement of endothelial function, and antithrombotic function. Most likely, these effects are attributable to bioactive ingredients such as polyphenols, monounsaturated and polyunsaturated fatty acids, or fibre.…
Low grade inflammation is characterized by raised concentrations of inflammatory markers in the absence of any overt symptoms and is recognized as a risk factor for a number of chronic diseases including cancer, cardiovascular, cerebrovascular and neurodegenerative diseases. Many studies suggest that low grade inflammation is mitigated by health promoting behaviours such as healthy eating patterns, physical activity, body weight maintenance and tobacco cessation. To date, large scale studies were mainly focused on circulating markers and little evidence is available on cellular biomarkers. The MOLI-SANI study is a prospective cohort study that has recruited 24 325 men and women aged >/=35 years from the general population of the Molise Region, a Southern Italian area, with the purpose of investigating genetic…
OBJECTIVES: Habitual diet plays a major role in shaping the composition of the gut microbiota, and also determines the repertoire of microbial metabolites that can influence the host. The typical Western diet corresponds to that of an omnivore; however, the Mediterranean diet (MD), common in the Western Mediterranean culture, is to date a nutritionally recommended dietary pattern that includes high-level consumption of cereals, fruit, vegetables and legumes. To investigate the potential benefits of the MD in this cross-sectional survey, we assessed the gut microbiota and metabolome in a cohort of Italian individuals in relation to their habitual diets. DESIGN AND RESULTS: We retrieved daily dietary information and assessed gut microbiota and metabolome in 153 individuals habitually following omnivore, vegetarian or…
The Mediterranean diet pattern is increasingly associated with improved metabolic health. Two mechanisms by which consuming a Mediterranean diet pattern may contribute to improved metabolic health are modulation of the gastrointestinal (GI) microbiota and reduction of metabolic endotoxemia. Metabolic endotoxemia, defined as a 2- to 3-fold increase in circulating levels of bacterial endotoxin, has been proposed as a cause of inflammation during metabolic dysfunction. As the largest source of endotoxins in the human body, the GI microbiota represents a crucial area for research on strategies for reducing endotoxemia. Diets high in saturated fat and low in fiber contribute to metabolic endotoxemia through several mechanisms, including changes in the GI microbiome and bacterial fermentation end products, intestinal physiology and barrier function,…
Page 3 of 18

Contact us

We love your feedback. Get in touch with us.

  • Tel: +32 (0)2 230 99 70
  • Email: This email address is being protected from spambots. You need JavaScript enabled to view it.

Disclaimer

The authors have taken reasonable care in ensuring the accuracy of the information herein at the time of publication and are not responsible for any errors or omissions. Read more on our disclaimer and Privacy Policy.