Estrogen receptor alpha as a key target of red wine polyphenols action on the endothelium

BACKGROUND: A greater reduction in cardiovascular risk and vascular protection associated with diet rich in polyphenols are generally accepted; however, the molecular targets for polyphenols effects remain unknown. Meanwhile evidences in the literature have enlightened, not only structural similarities between estrogens and polyphenols known as phytoestrogens, but also in their vascular effects. We hypothesized that alpha isoform of estrogen receptor (ERalpha) could be involved in the transduction of the vascular benefits of polyphenols.

METHODOLOGY/PRINCIPAL FINDINGS: Here, we used ERalpha deficient mice to show that endothelium-dependent vasorelaxation induced either by red wine polyphenol extract, Provinols, or delphinidin, an anthocyanin that possesses similar pharmacological profile, is mediated by ERalpha. Indeed, Provinols, delphinidin and ERalpha agonists, 17-beta-estradiol and PPT, are able to induce endothelial vasodilatation in aorta from ERalpha Wild-Type but not from Knock-Out mice, by activation of nitric oxide (NO) pathway in endothelial cells. Besides, silencing the effects of ERalpha completely prevented the effects of Provinols and delphinidin to activate NO pathway (Src, ERK 1/2, eNOS, caveolin-1) leading to NO production. Furthermore, direct interaction between delphinidin and ERalpha activator site is demonstrated using both binding assay and docking. Most interestingly, the ability of short term oral administration of Provinols to decrease response to serotonin and to enhance sensitivity of the endothelium-dependent relaxation to acetylcholine, associated with concomitant increased NO production and decreased superoxide anions, was completely blunted in ERalpha deficient mice.

CONCLUSIONS/SIGNIFICANCE: This study provides evidence that red wine polyphenols, especially delphinidin, exert their endothelial benefits via ERalpha activation. It is a major breakthrough bringing new insights of the potential therapeutic of polyphenols against cardiovascular pathologies.

Additional Info

  • Authors:

    Chalopin,M.; Tesse,A.; Martinez,M.C.; Rognan,D.; Arnal,J.F.; Andriantsitohaina,R.

  • Issue: PLoS.ONE. / page 8554
  • Published Date: 2010
  • More Information:

    For more information about this abstract, please contact
    This email address is being protected from spambots. You need JavaScript enabled to view it. at the Deutsche Weinakademie GmbH

Read 1149 times

Our Partners

 
 

Contact us

We love your feedback. Get in touch with us.

  • Hot line: +32 (0)2 230 99 70
  • Email: This email address is being protected from spambots. You need JavaScript enabled to view it.

Connect with us

We're on Social Networks. Follow us.

Disclaimer

The authors have taken reasonable care in ensuring the accuracy of the information herein at the time of publication and are not responsible for any errors or omissions. Read more on our disclaimer and Privacy Policy.